
Transportation Research Part E 175 (2023) 103168

1

P
p
B
J
a

b

c

A

K
R
T
S
L
P
A

1

o
a
r
C

h
R

Contents lists available at ScienceDirect

Transportation Research Part E

journal homepage: www.elsevier.com/locate/tre

redicting drivers’ route trajectories in last-mile delivery using a
air-wise attention-based pointer neural network
aichuan Mo a, Qingyi Wang a,∗, Xiaotong Guo a, Matthias Winkenbach b,
inhua Zhao c

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
Center for Transportation and Logistics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America

R T I C L E I N F O

eywords:
oute planning
rajectory prediction
equence-to-sequence model
ast-mile delivery
ointer network
ttention

A B S T R A C T

In last-mile delivery, drivers frequently deviate from planned delivery routes because of their
tacit knowledge of the road and curbside infrastructure, customer availability, and other
characteristics of the respective service areas. Hence, the actual stop sequences chosen by an
experienced human driver may be potentially preferable to the theoretical shortest-distance
routing under real-life operational conditions. Thus, being able to predict the actual stop
sequence that a human driver would follow can help to improve route planning in last-
mile delivery. This paper proposes a pair-wise attention-based pointer neural network for this
prediction task using drivers’ historical delivery trajectory data. In addition to the commonly
used encoder–decoder architecture for sequence-to-sequence prediction, we propose a new
attention mechanism based on an alternative specific neural network to capture the local pair-
wise information for each pair of stops. To further capture the global efficiency of the route,
we propose a new iterative sequence generation algorithm that is used after model training
to identify the first stop of a route that yields the lowest operational cost. Results from an
extensive case study on real operational data from Amazon’s last-mile delivery operations in
the US show that our proposed method can significantly outperform traditional optimization-
based approaches and other machine learning methods (such as the Long Short-Term Memory
encoder–decoder and the original pointer network) in finding stop sequences that are closer
to high-quality routes executed by experienced drivers in the field. Compared to benchmark
models, the proposed model can increase the average prediction accuracy of the first four stops
from around 0.229 to 0.312, and reduce the disparity between the predicted route and the
actual route by around 15%.

. Introduction

The optimal planning and efficient execution of last-mile delivery routes is becoming increasingly important for the business
perations of many logistics service providers around the globe for a variety of reasons. E-commerce volumes are growing rapidly
nd make up a constantly growing share of overall retail sales. For instance, in the US, the share of e-commerce sales in total
etail sales has grown from around 4% in 2010 to around 13% in 2021. Even by the end of 2019, i.e., before the outbreak of the
OVID-19 pandemic, it had reached 11% (US Census Bureau, 2021). Undoubtedly, the pandemic further accelerated the growth of

∗ Corresponding author.
E-mail address: qingyiw@mit.edu (Q. Wang).
366-5545/© 2023 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.tre.2023.103168
eceived 30 October 2022; Received in revised form 22 March 2023; Accepted 11 May 2023

https://www.elsevier.com/locate/tre
http://www.elsevier.com/locate/tre
mailto:qingyiw@mit.edu
https://doi.org/10.1016/j.tre.2023.103168
https://doi.org/10.1016/j.tre.2023.103168

Transportation Research Part E 175 (2023) 103168B. Mo et al.

i
B
2
d
d
a

p
V
T
a
o
e
h
c

a
T
m

f
e
e
t
a

e-commerce (Postnord, 2021; McKinsey & Company, 2021). In the medium to long run, its growth will continue to be fueled by
an ongoing trend towards further urbanization, which is particularly pronounced in developing and emerging economies (United
Nations Department of Economic and Social Affairs, 2019). The share of the global population living in urban areas is currently
projected to rise from around 55% in 2018 to around 68% by 2050. The associated increase in population density in most urban areas
will likely lead to growing operational uncertainties for logistics service providers, as increasing congestion levels, less predictable
travel times, and scarce curb space make efficient and reliable transport of goods into and out of urban markets increasingly
challenging (Rose et al., 2016).

As a result of the continued boom of e-commerce and constantly growing cities, global parcel delivery volumes have been
ncreasing rapidly in recent years and are expected to continue to do so. Across the 13 largest global markets, including the US,
razil, and China, the volume of parcels delivered more than tripled from 43 billion in 2014 to 131 billion in 2020 (Pitney Bowes,
020). At the same time, customer expectations towards last-mile logistics services are rising. For instance, there is a growing
emand for shorter delivery lead times, including instant delivery services and same-day delivery, as well as customer-defined
elivery preferences when it comes to the time and place of delivery (Lim and Winkenbach, 2019; Cortes and Suzuki, 2021; Snoeck
nd Winkenbach, 2021).

When applied to realistically sized instances of a last-mile delivery problem, solving the underlying TSP or vehicle routing
roblem (VRP) to (near) optimality becomes challenging, as both problem classes are known to be NP-hard. Traditional TSP and
RP formulations aim to minimize the total distance or duration of the route(s) required to serve a given set of delivery stops.
he operations research literature has covered the TSP, VRP, and their many variants extensively, and in recent years important
dvances have been made with regards to solution quality and computational cost. However, in practice, many drivers, with their
wn tacit knowledge of delivery routes and service areas, divert from seemingly optimal routes for reasons that are difficult to
ncode in an optimization model directly. For example, experienced drivers may have a better understanding of which roads are
ard to navigate, at which times traffic is likely to be bad, when and where they can easily find parking, and which stops can be
onveniently served together. Therefore, compared to the theoretically optimal (i.e., distance or time minimizing) route, the deviated
actual route sequence chosen by an experienced human driver is potentially preferable under real-life operational conditions. Due to
their often simplistic, single-objective nature, most theoretical route optimization algorithms fail to capture the complex, experience-
based decision-making of delivery drivers, who would judge the quality of a route sequence not just based on a single metric such
as time or distance, but by implicitly factoring in criteria such as convenience, efficiency, and safety (Merchán et al., 2022). This
notion has been confirmed by anecdotal evidence of industry experts from a variety of leading last-mile carriers. While these players
continue to invest heavily into developing new and better route optimization algorithms, they all allow their experienced drivers to
deviate from the theoretical route plans if necessary, in order to uncover further potential for algorithm improvement and learning
from operational practice (see, e.g., Zax, 2013).

An important challenge in today’s last-mile delivery route planning is therefore to leverage historical route execution data to
propose planned route sequences that are close to the actual trajectories that would be executed by drivers, given the delivery
requests and their characteristics. Note that, while distance and time-based route efficiency is still an important factor for planning
route sequences, it is not the sole objective, as tacit driver knowledge is also incorporated in the proposed route sequences. Unlike
a typical VRP in which the number of vehicles and their respective route sequences need to be determined simultaneously, in this
study, we focus on solving a problem that is similar to a TSP at the individual vehicle level. That is, we aim to solve a stop sequence
to serve a given set of delivery requests, and expect that the proposed stop sequence is as close to the actual trajectories that would
be executed by drivers as possible.

To this end, we propose a pair-wise attention-based pointer neural network to predict the actual route sequence taken by delivery
drivers using drivers’ historical delivery trajectory data. The proposed model follows a typical encoder–decoder architecture for the
sequence-to-sequence prediction. However, unlike previous studies, we propose a new attention mechanism based on an ASNN to
capture the local pair-wise information for each stop pair. To further capture the global efficiency of the route (i.e., its operational
cost in terms of total distance or duration), after model training, we propose a new sequence generation algorithm that iterates over
different first stops and selects the route with the lowest operational cost.

The main contribution of this paper is three-fold: First, we propose a new ASNN-based attention mechanism to capture the local
information between pairs of stops (e.g., travel time, geographical relation), which can be well adapted to the original pointer
network framework for sequence prediction. Second, we propose a new sequence generation algorithm that iterates over different
first stops in the predicted route sequences and selects the lowest operational cost route. The intuition is that the stop-to-stop
relationship (referred to as the local view) is easier to learn from data than the stop sequence of the route as a whole (referred to
s the global view). Lastly, we apply our proposed method to a large set of routes executed by Amazon delivery drivers in the US.
he results show that our proposed model can outperform traditional optimization-based approaches and other machine learning
ethods in finding stop sequences that are closer to high-quality routes executed by experienced drivers in the field.

The remainder of this paper is structured as follows. In Section 2 we define the problem setting under investigation in a more
ormal way. Section 3 then reviews previous studies in the literature related to this paper. Section 4 presents our methodology and
laborates on the detailed architecture of the proposed pair-wise attention-based pointer neural network. Section 5 presents the
xperimental setup and numerical results of our case study, applying our proposed method to real-world data made available by
he Amazon Last-Mile Routing Research Challenge (Merchán et al., 2022; Winkenbach et al., 2021). Section 6 concludes this paper
2

nd discusses future research directions.

Transportation Research Part E 175 (2023) 103168B. Mo et al.
Fig. 1. Illustrative example of the problem setting.

2. Problem setting

In the last-mile delivery routing problem considered here, a set of stops  = {𝑠1,… , 𝑠𝑛} to be served by a given delivery vehicle
is given to the route planner. The planner’s objective is to find the optimal stop sequence that has the minimal operational cost. In
this case, we consider total cost as total travel time. The planner is given the expected operational cost (i.e., travel times) between all
pairs of stops (𝑠𝑖, 𝑠𝑗). The theoretically optimal stop sequence, denoted by (𝑠T

(1),… , 𝑠T
(𝑛)), can be found by solving a TSP formulation.

This stop sequence is referred to as the planned stop sequence. However, as discussed in Section 1, minimizing the theoretical
operational cost (i.e., total travel time) of the route may not capture experienced drivers’ tacit knowledge about the road network,
infrastructure, and recipients. Therefore, the actual driver executed stop sequence (𝑠(1),… , 𝑠(𝑛)) can be different from the planned
route sequence. Note that here, 𝑠(𝑖) ∈  denotes the 𝑖th stop that is actually visited by the driver.

The objective of the model presented in this study is to predict the actual driver executed sequence (𝑠(1),… , 𝑠(𝑛)) given a set of
stops  and the corresponding delivery requests and characteristics 𝑋 (such as the number of packages, estimated service time for
each package, geographical information for each stop, travel time between each stop pairs, etc.). All drivers are assumed to start
their routes from a known depot 𝐷 and return back to 𝐷 . Therefore, the complete trajectory should be a tour (𝐷 , 𝑠(1),… , 𝑠(𝑛), 𝐷).
For the convenience of model description, we ignore the depot station in the sequence.

Fig. 1 provides a simple example for illustration. In this example, we are given four stops  = {𝑠1, 𝑠2, 𝑠3, 𝑠4} and a depot 𝐷 .
The planned stop sequence for the driver is (𝑠4, 𝑠1, 𝑠2, 𝑠3), while the actual stop sequence executed by the driver is (𝑠4, 𝑠2, 𝑠1, 𝑠3).
The proposed model aims to predict the actual sequence (𝑠4, 𝑠2, 𝑠1, 𝑠3) given the depot location 𝐷 , the set of stops to be visited
, and characteristics of the stops 𝑋 . This problem setup is inspired by the Amazon Last-Mile Routing Research Challenge (cf.,
Winkenbach et al., 2021). Note that this study only focuses on the stop sequence prediction. The routing between stops is not
considered. It is assumed that the drivers always take the optimal route between stops, which is reflected by the travel time matrix
between stops in our problem setup.

3. Literature review

The problem setting defined in Section 2 involves both solving a cost-minimizing routing problem (i.e., the TSP) and capturing
tacit driver knowledge to learn systematic deviation of drivers from the planned and theoretically optimal stop sequences. Therefore,
we will first review the extant literature on the TSPs and its most relevant variants. We will then go through various machine
learning approaches that have been proposed by the extant literature to generate sequences, with a section on methods specifically
for solving the TSP. Note that although these machine learning approaches are used to solve the TSP instead of the actual routes
taken by drivers, their architectures may be helpful to learn the actual route as well.

3.1. Traveling salesman problems

First, given the travel times between stops, a solution to the TSP, which finds the route with the minimum cost or distance
(i.e., the planned route), can be a close approximation of the actual route. Since the drivers are paid for the number of packages
delivered, all drivers’ goal is to deliver the packages in the minimum amount of time. Most of the drivers do follow large parts of
the planned routes.

The TSP is a well-known NP-hard problem that has been studied extensively over the last century, with a lot of books and review
papers published on its history, formulations, solution approaches, and applications (Applegate et al., 2006; Matai et al., 2010;
Davendra and Bialic-Davendra, 2020). An overview of the relevant TSP variants and solution approaches are presented below.
3

Transportation Research Part E 175 (2023) 103168B. Mo et al.

o
w
r
1
a
s
w
s

s
b
b
p
f
h
m
D
f

3

w
o

n
h
s
g

v
a
a
t
d

t
i
a
a
t

a
t
a
o
a
e
a

s
a
a
g
h

The basic setup of TSP has one traveler and requires the traveler to return to the starting point after visiting each node exactly
nce, and that the traveling cost matrix (represented by distance and/or time) is symmetric (cost between 𝑖 and 𝑗 is the same
ith that between 𝑗 and 𝑖). In most real-world applications, the basic setup needs to be modified. For example, the cost matrix, if

epresented by travel times, is likely asymmetric. This variant of TSP is thus named asymmetric TSP (ATSP) (Jonker and Volgenant,
983). In some applications, the vehicle does not need to return to the original depot (Traub et al., 2021), or it can charge/refuel
nd potentially load additional delivery items at intermediate stops (Küçükoğlu et al., 2019). In many last-mile delivery applications,
ome packages are time-sensitive, and therefore time window constraints to their delivery need to be considered in a so-called TSP
ith time windows (TSPTW) (da Silva and Urrutia, 2010; Mladenović et al., 2012). In large systems, there might be more than one

alesman serving a set of stops, resulting in multiple traveling salesmen problems (MTSPs) (Cheikhrouhou and Khoufi, 2021).
Different variants of TSP further impose different constraints on the solution. While some problems can be reduced to the basic

etup in the formulation stage, others require more versatile solution algorithms. In general, the solution approaches to the TSP can
e divided into exact approaches and approximate approaches. Exact approaches include branch-and-cut (Yuan et al., 2020) and
ranch-and-bound (Salman et al., 2020). Since the TSP is a well-known NP-hard problem, exact approaches can only be applied on
roblems of smaller scale, or aid in heuristics to cut the solution space. Among approximate approaches, there are heuristics designed
or the TSP specifically, as well as meta-heuristics that are generic and treat the problem like a blackbox. The most commonly used
euristics and meta-heuristics include nearest neighbor searches, local searches, simulated annealing, and genetic algorithms. A
ore comprehensive review of existing solution approaches can be found in Halim and Ismail (2017) and Purkayastha et al. (2020).
espite the TSP being NP-hard, modern mixed-integer optimization solvers (e.g., Gurobi, CPLEX, or GLPK) can solve it efficiently

or real-world instances by combining exact approaches with heuristics (Guo and Samaranayake, 2022).

.2. Sequence-to-sequence prediction using deep learning

The TSP and its variants are a viable option for sequence generation only when the objective is clearly defined. They fall short
hen the sequence generation problem does not have a well-defined cost-minimization objective. In a lot of applications, the rule
f sequence generation cannot be simply defined and optimized.

A standard example for a sequence learning problem is machine translation, where a sequence of words in one language
eeds to be translated to another language. Another type of sequence learning is time series modeling, where a sequence of
istorical observations is given to predict future states of the system. In both cases, the primary modeling task is to learn the
equence generation rules. In recent years, deep learning has successfully achieved great performance in various settings of sequence
eneration. These models are often referred to as sequence-to-sequence (seq2seq) models.

seq2seq models often consist of an encoder and a decoder, where the encoder encodes the input sequence into a fixed-length
ector representation, and the decoder generates a sequence based on the generated vector representation. Most encoder–decoder
rchitectures adopt recurrent neural network (RNN) layers and its variants such as LSTM (Hochreiter and Schmidhuber, 1997)
nd gated recurrent layers (GRU) (Cho et al., 2014) to learn long-range dependencies. Early works using LSTM alone were able
o generate plausible texts (Graves, 2013) and translate between English and French (Sutskever et al., 2014) with long-range
ependencies. Chung et al. (2014) demonstrate the superiority of GRU compared to LSTMs in music and speech signal modeling.

Attention-based mechanisms, first introduced by Bahdanau et al. (2015), have been shown to be a great addition since it allows
he decoder to selectively attend to parts of the input sequence and relieves the encoder of the task of encoding all the information
nto a fixed-length vector representation. Most sequence generation problems benefit from keeping track of long-range dependencies
nd global context while decoding. To address that, multi-level attention was proposed to capture the local and global dependency,
nd has shown to be effective in speech recognition (Chorowski et al., 2015), text generation (Liu et al., 2018), and machine
ranslation tasks (Luong et al., 2015).

The encoder–decoder architecture combined with attention is very versatile, and it can be combined with other deep learning
rchitectures to perform sequence learning in addition to language tasks. The LSTM and attention architecture is applied to semantic
rajectory prediction (Karatzoglou et al., 2018), text summarization (Liang et al., 2020), demand modeling (Ren et al., 2020),
nd wind power forecasting (Zhang et al., 2020). When the goal is set to recover the original sequence, unsupervised learning
f molecule embedding can be obtained for downstream classification tasks (Xu et al., 2017). When the spatial dimension is added,
convolutional neural network (CNN) layer can be added, and the dimension of the sequence generated can be expanded. For

xample, Wang et al. (2020a) predict a city’s crowd flow patterns, and Wu et al. (2020) generate 3D shapes via sequentially
ssembling different parts of the shapes.

While RNN-based architectures are still a widely adopted choice for seq2seq modeling, attention can also be used as a
tandalone mechanism for seq2seq translations independent of RNNs. The idea was proposed by Vaswani et al. (2017) in an
rchitecture named transformer. Without recurrence, the network allows for significantly more parallelization, and is shown to
chieve superior performance in experiments, and powered the popularity of transformer-based architectures in various sequence
eneration tasks (Huang et al., 2018; Lu et al., 2021). A separate line of work by Zhang et al. (2019) also demonstrated that a
4

ierarchical CNN model with attention outperforms the traditional RNN-based models.

Transportation Research Part E 175 (2023) 103168B. Mo et al.

s
s
h
f
n

t
i
c
l
L
t
h
r

l
i
a

4

i
w

4

3.3. Using deep learning to generate TSP solutions

The above seq2seq translation mechanisms work well when the input data is naturally organized as a sequence, and the output
equence corresponds to the input sequence, such as in music and language. However, in our paper, the input is an unordered
equence, and the output has the same but re-ordered elements of the same input sequence. In this case, the concept of attention is
elpful and has been successfully used to produce solutions to the TSP. The pointer network, proposed by Vinyals et al. (2015) and
urther developed in Vinyals et al. (2016), uses attention to select a member of the input sequence at each decoder step. While it is
ot required that the input sequence is ordered, an informative ordering could improve the performance (Vinyals et al., 2016).

While the original pointer network was solved as a classification problem and cross-entropy loss was used, it is not necessarily
he most efficient choice. The cross-entropy loss only distinguishes between a correct prediction and an incorrect prediction. But in
nstances like routing, the distances between the predicted position and the correct position, as well as the ordering of subsequences,
ould incur different costs in practice. Further developments in solving TSP with machine learning methods involve reinforcement
earning (RL), which enables the optimization of custom evaluation metrics (Bello et al., 2019; Kool et al., 2019; Ma et al., 2019;
iu et al., 2020). Joshi et al. (2019) compared the performance of RL and supervised learning (SL) on TSP solutions and found
hat SL and RL models achieve similar performance when the graphs are of similar sizes in training and testing, whereas RL models
ave better generalizability over variable graph sizes. However, RL models require significantly more data points and computational
esources, which is not always feasible.

Although this seq2seq and attention framework has only been used to reproduce TSP solutions, it provides an opportunity to
earn and incorporate additional information beyond the given travel times and potentially learn individual differences when more
nformation is given to the neural network. In this paper, we combine the ideas of seq2seq modeling and attention to predict the
ctual route executed by a driver.

. Methodology

This section details the methodology proposed to address the problem. First, the high-level seq2seq modeling framework is
ntroduced, followed by the explanation of the novel pair-wise attention and sequence generation and selection mechanism used
ithin the modeling framework.

.1. Sequence-to-sequence modeling framework

Let the input sequence be an arbitrarily-ordered sequence (𝑠1,… , 𝑠𝑛). Denote the output sequence as (�̂�(1),… , �̂�(𝑛)). Let 𝑐𝑖 indicate
the ‘‘position index’’ of stop �̂�(𝑖) with respect to the input sequence (where 𝑐𝑖 ∈ {1,… , 𝑛}). For example, for input sequence (𝐵,𝐴, 𝐶)
and output sequence (𝐴,𝐵, 𝐶), we have 𝑐1 = 2, 𝑐2 = 1, 𝑐3 = 3, which means the first output stop 𝐴 is in the second position of the
input sequence (𝐵,𝐴, 𝐶) and so on.

The seq2seq model computes the conditional probability P(𝑐1,… , 𝑐𝑛 ∣ ; 𝜃) using a parametric neural network (e.g., recurrent
neural network) with parameter 𝜃, i.e.,

P(𝑐1,… , 𝑐𝑛 ∣  , 𝑋 ; 𝜃) = P(𝑐1 ∣  , 𝑋 ; 𝜃) ⋅
𝑛
∏

𝑖=2
P(𝑐𝑖 ∣ 𝑐1,… , 𝑐𝑖−1, , 𝑋 ; 𝜃) (1)

The parameters of the model are learnt by empirical risk minimization (maximizing the conditional probabilities on the training
set), i.e.,

𝜃∗ = argmax
𝜃

∑


P(𝑐1,… , 𝑐𝑛 ∣  , 𝑋 ; 𝜃) (2)

where the summation of  is over all training routes. In the following section, we will elaborate how P(𝑐𝑖 ∣ 𝑐1,… , 𝑐𝑖−1, , 𝑋 ; 𝜃) is
calculated using the pair-wise attention-based pointer neural network.

4.2. Pair-wise attention-based pointer neural network

Fig. 2 uses a four-stop example to illustrate the architecture of the proposed model. The whole model is based on the LSTM
encoder and decoder structure. In particular, we use one LSTM (i.e., encoder) to read the input sequence, one time step at a time, to
obtain a large fixed dimensional vector representation, and then to use another LSTM (i.e., decoder) to extract the output sequence.
However, different from the typical seq2seq model, we borrow the idea of the pointer network (Vinyals et al., 2015) to add a
pair-wise attention mechanism to predict the output sequence based on the attention mask over the input sequence. The pair-wise
attention is calculated based on an ASNN which was previously used for travel mode prediction (Wang et al., 2020b). Model details
will be shown in the following sections.

Intuitively, the LSTM encoder and decoder aim to capture the global view of the input information (i.e., overall sequence pattern)
by embedding the input sequence to hidden vector representation. While the ASNN-based pair-wise attention aims to capture the
local view (i.e., the relationship between two stops). Our experiments in Section 5 demonstrate the importance of both global and
local views in the sequence prediction.
5

Transportation Research Part E 175 (2023) 103168B. Mo et al.
Fig. 2. Overall architecture of the pair-wise attention-based pointer neural network.
Source: Adapted from Vinyals et al. (2015).

Fig. 3. Illustration of LSTM encoder.

4.2.1. LSTM encoder
Given an arbitrary stop sequence (𝑠1,… , 𝑠𝑛) as the input, let 𝑥𝑖 ∈ R𝐾 be the features of stop 𝑠𝑖, where 𝑥𝑖 may include the package

information, the customer information, and the geographical information of the stop 𝑠𝑖. 𝐾 is the number of features. The encoder
computes a sequence of encoder output vectors (𝑒1,… , 𝑒𝑛) by iterating the following:

ℎE
𝑖 , 𝑒𝑖 = LSTM(𝑥𝑖, ℎE

𝑖−1; 𝜃
E) ∀𝑖 = 1,… , 𝑛 (3)

where ℎE
𝑖 ∈ R𝐾E

ℎ is the encoder hidden vector with ℎE
0 ∶= 0. 𝑒𝑖 ∈ R𝐾𝑒 is the encoder output vector. 𝐾E

ℎ and 𝐾𝑒 are corresponding
vector dimensions. 𝜃E is the learnable parameters in an encoder LSTM cell. The calculation details of an LSTM cell can be found
in Appendix A. The encoding process transforms a sequence of features (𝑥1,… , 𝑥𝑛) into a sequence of embedded representation
(𝑒1,… , 𝑒𝑛). And the hidden vector of the last time step (ℎE

𝑛) includes the global information of the whole sequence, which will be
used for the LSTM decoder (see Fig. 3).

4.2.2. LSTM decoder
The role of a decoder in the traditional seq2seq model (Fig. 4) is to predict a new sequence one time step at a time. However, in

the pointer network structure with attention, the role of the decoder becomes producing a vector to modulate the pair-wise attention
over inputs. Denote the output sequence as (�̂�(1),… , �̂�(𝑛)). Let 𝑥(𝑖) be the feature of stop �̂�(𝑖).

At decoder step 𝑖, we have

ℎD
(𝑖+1), 𝑑(𝑖) = LSTM

([

𝑥(𝑖)
𝑤(𝑖)

]

, ℎD
(𝑖); 𝜃

D
)

∀𝑖 = 0, 1,… , 𝑛 (4)

where ℎD
(𝑖) ∈ R𝐾D

ℎ is the decoder hidden vector with ℎD
(0) = ℎE

𝑛 , 𝑑(𝑖) ∈ R𝐾𝑑 is the decoder output vector, 𝐾D
ℎ and 𝐾𝑑 are corresponding

vector dimensions, and 𝜃D are learnable parameters of the decoder LSTM cell. Note that we set 𝑥(0) = 𝑥𝐷 and 𝑑(0) = 𝑑𝐷, representing
the features and the decoder output of the depot, respectively. 𝑤(𝑖) is the context vector calculated from the attention component,
which will be explained in the next section.
6

Transportation Research Part E 175 (2023) 103168B. Mo et al.
Fig. 4. Illustration of LSTM decoder.

Fig. 5. Illustration of ASNN-based pair-wise attention.

4.2.3. ASNN-based pair-wise attention
The pair-wise attention aims to aggregate the global and local information to predict the next stop. Specifically, at each decoder

time step 𝑖 ∈ {0,… , 𝑛}, we know that the last predicted stop is �̂�(𝑖). To predict �̂�(𝑖+1), we consider all candidate stops 𝑠𝑗 ∈ , which
is the set of all stops not yet visited. We want to evaluate how possible that 𝑠𝑗 will be the next stop of �̂�(𝑖). The information of the
stop pair �̂�(𝑖) and 𝑠𝑗 can be represented by the following concatenated vector:

𝑣𝑗(𝑖) = concat(𝑧𝑗(𝑖), 𝜙(𝑥(𝑖), 𝑥𝑗), 𝑑(𝑖), 𝑒𝑗) (5)

where 𝑧𝑗(𝑖) is a vector of features associated with the stop pair (such as travel time from �̂�(𝑖) to 𝑠𝑗), and 𝜙(𝑥(𝑖), 𝑥𝑗) represents a feature
processing function to extract the pair-wise information from 𝑥(𝑖) and 𝑥𝑗 . For example, 𝜙(⋅) may return geographical relationship
between stops �̂�(𝑖) and 𝑠𝑗 , and it may also drop features not useful for the attention calculation. Intuitively, 𝑧𝑗(𝑖) and 𝜙(𝑥(𝑖), 𝑥𝑗) contains
only local information of the stop pair, while 𝑑(𝑖) and 𝑒𝑗 contain the global information of the whole stop set and previously visited
stops (see Fig. 5).
7

Transportation Research Part E 175 (2023) 103168B. Mo et al.

w
(
w
m

w
i

i

T
t

p

F
b
T
i

4

i

w

A
(
t
b
t
s
f
w
f

Given the pair-wise information vector 𝑣𝑗(𝑖), we can calculate the attention of stop �̂�(𝑖) to stop 𝑠𝑗 as:

𝑢𝑗(𝑖) = ASNN(𝑣𝑗(𝑖); 𝜃
A) ∀𝑖, 𝑗 = 1,… , 𝑛 (6)

𝑎𝑗(𝑖) =
exp(𝑢𝑗(𝑖))

∑𝑛
𝑗′=1 exp(𝑢

𝑗′
(𝑖))

∀𝑖, 𝑗 = 1,… , 𝑛 (7)

here 𝑎𝑗(𝑖) ∈ R is attention of stop �̂�(𝑖) to stop 𝑠𝑗 . ASNN(⋅; 𝜃A) is a multilayer perception (MLP) with the output dimension of one
i.e., 𝑢𝑗(𝑖) ∈ R). 𝜃A are the learnable parameters of the ASNN. The name ‘‘alternative specific’’ is because the same parametric network
ill be applied on all alternative stops 𝑠𝑗 ∈  separately (Wang et al., 2020b). Finally, we calculate the conditional probability to
ake the prediction:

P(𝑐𝑖+1 = 𝑗 ∣ 𝑐1,… , 𝑐𝑖, , 𝑋 ; 𝜃) = 𝑎𝑗(𝑖) ∀𝑖 = 0, 1,… , 𝑛, 𝑗 = 1,… , 𝑛 (8)

�̂�(𝑖+1) = argmax
𝑠𝑗∈⧵V

(𝑖)

𝑎𝑗(𝑖) ∀𝑖 = 0, 1,… , 𝑛 (9)

here V
(𝑖) = {�̂�(1),… , �̂�(𝑖)} is the set of stops that have been predicted (i.e., previously visited) until decoder step 𝑖. Eqs. (8) and (9)

ndicate that the predicted next stop at step 𝑖 is the one with highest attention among all stops that have not been visited.
The pair-wise attention framework also leverages the attention information as the input for the next step. This was achieved by

ntroducing the context vector (Bahdanau et al., 2015):

𝑤(𝑖) =
𝑛
∑

𝑗=1
𝑎𝑗(𝑖) ⋅ 𝑒𝑗 (10)

he context vector is a weighted sum of all the encoder output vectors with attention as the weights. As the attention provides
he emphasis for stop prediction, 𝑤(𝑖) helps to incorporate the encoded representation of the last predicted stop for the next stop

rediction. The inputs for the next LSTM cell thus will be the concatenation of the stop features and 𝑤(𝑖), i.e.,
[

𝑥(𝑖)
𝑤(𝑖)

]

.

It is worth noting that, the specific architecture of ASNN(⋅; 𝜃A) can be flexible depending on the input pair-wise information.
or example, if the information includes images or networks, convolutional neural network or graph convolutional networks can
e used for better extract features. In this study, we use the MLP for simplification as it already outperforms benchmark models.
he key idea is of the ASNN is to share the same trainable parameter 𝜃A for all stop pairs so as to better capture various pair-wise

nformation in the training process.

.3. Sequence generation and selection

During inference, given a stop set , the trained model with learned parameters 𝜃∗ are used to generate the sequence. Typically,
n the seq2seq modeling framework, the final output sequence is selected as the one with the highest probability, i.e.,

(𝑠𝑗∗1 ,… , 𝑠𝑗∗𝑛),where 𝑗∗1 ,… , 𝑗∗𝑛 = argmax
𝑗1 ,…,𝑗𝑛∈

P(𝑐1 = 𝑗1,… , 𝑐𝑛 = 𝑗𝑛 ∣  , 𝑋 ; 𝜃∗) (11)

here  = {All permutations of{1, . . . ,n}}
Finding this optimal sequence is computationally impractical because of the combinatorial number of possible output sequences.

nd so it is usually done with the greedy algorithm (i.e., always select the most possible next stop) or the beam search procedure
i.e., find the best possible sequence among a set of generated sequences given a beam size). However, in this study, we observe
hat the first predicted stop �̂�(1) is critical for the quality of the generated sequence. The reason may be that the local relationship
etween a stop pair (i.e., given the last stop to predict the next one) is easier to learn than the global relationship (i.e., predict
he whole sequence). Hence, in this study, we first generate sequences using the greedy algorithm with different initial stops, and
elect the one with the lowest operational cost. The intuition behind this process is that, once the first stop is given, the model can
ollow the learned pair-wise relationship to generate the sequence with relatively high accuracy. For all the generated sequences
ith different first stops, the one with the lowest operation cost captures the global view of the sequence’s quality. Therefore, the

inal sequence generation and selection algorithm is as follows:

Algorithm 1 Sequence generation
Input: Trained model, 
Output: Predicted stop sequence
1: for 𝑠 in  do
2: Let the first predicted stop be �̂�(1) = 𝑠
3: Predict the following stop sequence (�̂�(2), ..., �̂�(𝑛)) using the greedy algorithm. Denote the predicted sequence as 𝑃𝑠.
4: Calculate the total operation cost of the whole sequence (including depot), denoted as 𝑂𝐶𝑠.

return 𝑃𝑠∗ where 𝑠∗ = argmin𝑠∈ 𝑂𝐶𝑠
8

Transportation Research Part E 175 (2023) 103168B. Mo et al.
Fig. 6. Description of dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Case study

5.1. Dataset

The data used in our case study was made available as part of the Amazon Last Mile Routing Research Challenge (Merchán et al.,
2022). The dataset contains a total of 6112 actual Amazon driver trajectories for the last-mile delivery from 5 major cities in the
US: Austin, Boston, Chicago, Los Angeles, and Seattle. Each route consists of a sequence of stops. Each stop represents the actual
parking location of the driver, and the package information (package numbers, package size, and planned service time) associated
with each stop is given. The stops are characterized by their latitudes and longitudes, and expected travel time between stops are
known.

Fig. 6 shows the distribution of the number of stops per route and an example route. Most routes have around 120 to 180 stops,
and the maximum observed number of stops is around 250. Fig. 6(b) shows an example of an actual driver trajectory in Boston.
Since the depot is far from the delivery stops, we attach the complete route (with the depot indicated by a red dot) at the bottom
left of the figure, while the main plot only shows the delivery stops.

In this data set, each stop is associated with a zone ID (indicated by different colors in Fig. 6(b)). When Amazon generates
planned routes for drivers, they usually expect drivers to finish the delivery for one zone first, then go to another zone. And the
actual driver trajectories also follow this pattern as shown in Fig. 6(b) (but the actual zone sequence may be different from the
planned one). Therefore, in this study, we focus on the problem of zone sequence prediction. That is, 𝑠𝑖 in the case study section now
represents a specific zone,  represents the set of zones, and 𝑋 represents zone features. This transformation does not affect the
model structure proposed in Section 4. The only difference is that the new problem has a relatively smaller scale compared to the stop
sequence prediction because the number of zones in a route is smaller than that of stops. The zone-to-zone travel time is calculated as
9

Transportation Research Part E 175 (2023) 103168B. Mo et al.
Fig. 7. Relationship between stop sequence and zone sequence.

the average travel time of all stop pairs between the two zones. Fig. 7 presents an illustrative example of the relationship between
zone and stop sequences. As the dataset does not contain the original planned sequence, we assume the planned zone sequence is
the one with the lowest total travel time (generated by a TSP solver, (𝑠T

1 ,… , 𝑠T
𝑛)). After generating the zone sequence, we can restore

the whole stop sequence by assuming that drivers within a specific zone follow an optimal TSP tour. Details of the zone sequence
to stop sequence generation can be found in Appendix B.

5.2. Experimental setup

We randomly select 4889 routes for model training and cross-validation, and the remaining 1223 routes are used to evaluate/test
model performance.

We consider a one-layer LSTM for both the encoder and decoder with the hidden unit sizes of 32 (i.e., 𝐾D
ℎ = 𝐾𝑒 = 𝐾E

ℎ = 𝐾𝑑 = 32).
And the ASNN is set with 2 hidden layers with 128 hidden units in each layer. We train the model using Adam optimizer with a
default learning rate of 0.001 and 30 training epochs. To utilize the planned route information, the input zone sequence for the
LSTM encoder is set as the TSP result (i.e., lowest travel time). That is, the input sequence (𝑠1,… , 𝑠𝑛) = (𝑠T

1 ,… , 𝑠T
𝑛).

In the case study, 𝑥𝑖 represents zone features, including the latitude and longitude of the zone center, number of stops in the
zone, number of intersections in the zone, number of packages in the zone, total service time in the zone, total package size in the
zone, and the travel time from this zone to all other zones. The zone pair features 𝑧𝑗(𝑖) includes the travel time from �̂�(𝑖) to 𝑠𝑗 and
zone ID relationship characteristics. For example, the zone IDs ‘‘B-6.2C’’ and ‘‘B-6.3A’’ signal that they belong to the higher-level
cluster ‘‘B-6’’. As we assume all pair-wise features are captured by 𝑧𝑗(𝑖), 𝜙(𝑥(𝑖), 𝑥𝑗) is not specified in this case study.

5.3. Evaluation metrics

5.3.1. Disparity score
Consistent with the Amazon Last Mile Routing Research Challenge, we evaluate the quality of the predicted stop sequences using

a ‘‘disparity score’’ defined as follows:

𝑅(𝐴,𝐵) =
𝑆𝐷(𝐴,𝐵) ⋅ 𝐸𝑅𝑃norm(𝐴,𝐵)

𝐸𝑅𝑃e(𝐴,𝐵)
(12)

where 𝑅(𝐴,𝐵) is the disparity score for the actual sequence 𝐴 and predicted sequence 𝐵, and 𝑆𝐷(𝐴,𝐵) is the sequence deviation
defined as

𝑆𝐷(𝐴,𝐵) = 2
𝑛(𝑛 − 1)

𝑛
∑

𝑖=2

(

|𝑐[𝐵𝑖] − 𝑐[𝐵𝑖−1]| − 1
)

(13)

where 𝑛 is the total number of stops, 𝐵𝑖 is the 𝑖th stop of sequence 𝐵, 𝑐[𝐵𝑖] is the index of stop 𝐵𝑖 in the actual sequence 𝐴 (i.e., its
position in sequence 𝐴). In the case of 𝐴 = 𝐵 (i.e., perfectly predicted), we have 𝑐[𝐵𝑖]−𝑐[𝐵𝑖−1] = 1 for all 𝑖 = 2,… , 𝑛, and 𝑆𝐷(𝐴,𝐵) = 0.

𝐸𝑅𝑃norm(𝐴,𝐵) is the Edited Distance with Real Penalty (ERP) defined by the following recursive formula:

𝐸𝑅𝑃norm(𝐴,𝐵) = 𝐸𝑅𝑃norm(𝐴2∶|𝐴|, 𝐵2∶|𝐵|) + Timenorm(𝐴1, 𝐵1) (14)

where Timenorm(𝑠𝑖, 𝑠𝑗) =
Time(𝑠𝑖 ,𝑠𝑗)

∑

𝑗′∈{1,…,𝑛} Time(𝑠𝑖 ,𝑠𝑗′)
is the normalized travel time from stop 𝑠𝑖 to stop 𝑠𝑗 . 𝐸𝑅𝑃e(𝐴,𝐵) is the number of edit

operations (insertions, substitutions, or deletions) required to transform sequence 𝐴 to sequence 𝐵 as when executing the recursive
𝐸𝑅𝑃norm formulation. Hence, the ratio 𝐸𝑅𝑃norm(𝐴,𝐵)

𝐸𝑅𝑃e(𝐴,𝐵)
represents the average normalized travel time between the two stops involved

in each ERP edit operation. In the case of 𝐴 = 𝐵, we have 𝐸𝑅𝑃norm(𝐴,𝐵)
𝐸𝑅𝑃e(𝐴,𝐵)

= 0.
The disparity score 𝑅(𝐴,𝐵) describes how well the model-estimated sequence matches the known actual sequence. Lower score

indicates better model performance. A score of zero means perfect prediction. The final model performance is evaluated by the
mean score over all routes in the test set.
10

Transportation Research Part E 175 (2023) 103168B. Mo et al.
Fig. 8. Model architecture of the LSTM-E-D seq2seq prediction model.

5.3.2. Prediction accuracy
In addition to the disparity score, we also evaluate the prediction accuracy of the first four zones in each route. We choose the

first four zones because the minimum number of zones in a route is four. Let the predicted sequence of the 𝑚th route be 𝐴(𝑚) and
the associated actual sequence be 𝐵(𝑚). The prediction accuracy of the 𝑖th zone is defined as:

Prediction accuracy𝑖 =

∑𝑀
𝑚=1 1{𝐴(𝑚)

𝑖 =𝐵(𝑚)
𝑖 }

𝑀
(15)

where 𝑀 is the total number of testing samples. 1{⋅} is an indicator function which returns 1 if the condition is true, otherwise 0.

5.4. Benchmark models

The following optimization and machine learning models are used as benchmarks to compare with the proposed approach.
Tour TSP. The first benchmark model is the zone sequence generated by tour TSP. The first and last stops are both set as the

depot. This is the route that we treat as the planned route with the lowest travel time. Since a driver would follow the ‘‘planned
routes’’ in most of the time, the output from a TSP can be treated as a prediction to the driver’s actual route. Note that we cannot
use the same objective function in Eq. (2) for TSP because TSP model cannot evaluate the likelihood of a route.

Open-tour TSP. Another variant for TSP models is the open-tour TSP, where we assume drivers do not need to return to the
depot. The intuition for this model is that some drivers, when delivering packages, may ignore the last trip back to the depot in
their routing decisions.

ASNN model. The ASNN component can be trained to predict the next zone given the current zone, and the prediction sequence
can be constructed in a greedy way starting from the given depot. The training zone pairs (including from depot to the first zone)
are extracted from all sequences in the training routes. And the input features are the same as the ASNN component in the proposed
model except for (𝑑(𝑖), 𝑒𝑗) (i.e., output vectors from LSTM decoder and encoder, respectively). All hyper-parameters of the ASNN
model are the same as the attention component.

Inspired by the importance of the first zone, we also implement another sequence generation method similar to Section 4.3. That
is, we go through all zones in a route and assume it is the first zone, then use the trained ASNN to predict the remaining sequence.
The final sequence is selected as the one with the lowest travel time.

LSTM-encoder–decoder. The LSTM-encoder–decoder (LSTM-E-D) architecture is a typical seq2seq model proposed by Sutskever
et al. (2014). The model structure is shown in Fig. 8. In the decoder stage, the model outputs the predicted zone based on last
predicted zone’s information. The model formulation can be written as

ℎE
𝑖 , 𝑒𝑖 = LSTM(𝑥𝑖, ℎE

𝑖−1; 𝜃
E) ∀𝑖 = 1,… , 𝑛 (16)

ℎD
(𝑖+1), 𝑑(𝑖) = LSTM(𝑥(𝑖), ℎD

(𝑖); 𝜃
D) ∀𝑖 = 0, 1,… , 𝑛 (17)

The decoder output vector 𝑑(𝑖) are, then feed into a fully-connected (FC) layer to calculate probability of the next stop:

𝑔(𝑖) = FC(𝑑(𝑖); 𝜃FC) ∀𝑖 = 1,… , 𝑛 (18)

P(𝑐𝑖+1 ∣ 𝑐1,… , 𝑐𝑖, , 𝑋 ; 𝜃) = Softmax(𝑔(𝑖)) ∀𝑖 = 1,… , 𝑛 (19)

where 𝑔(𝑖) ∈ R𝐾𝑧 , 𝐾𝑧 is the maximum number of zones in the dataset. And the next predicted stop is selected by maximizing
P(𝑐 = 𝑗 ∣ 𝑐 ,… , 𝑐 , , 𝑋 ; 𝜃) for all 𝑠 ∈  ⧵ V (i.e., the zones that are not in the route and that have been visited are excluded).
11

𝑖+1 1 𝑖 𝑗 (𝑖)

Transportation Research Part E 175 (2023) 103168B. Mo et al.

(
S

T
q
p
s

A

t
m
o
f
T
a
g
g

5

5

b
t
s
a

s
f
T
T
m

p
c
m
t
T

t
b
a
s

o
T
o
m
p

m
v
s

Original Pointer Network. Another benchmark model is the original pointer network (Pnt Net) proposed by Vinyals et al.
2015). The overall architecture of the pointer network is similar to the proposed model except for the attention component.
pecifically, the pointer network calculates attention as:

𝑢𝑗(𝑖) = 𝑊 𝑇
1 tanh(𝑊2𝑒𝑗 +𝑊3𝑑(𝑖)) ∀𝑖, 𝑗 = 1,… , 𝑛 (20)

𝑎𝑗(𝑖) =
exp(𝑢𝑗(𝑖))

∑𝑛
𝑗′=1 exp(𝑢

𝑗′
(𝑖))

∀𝑖, 𝑗 = 1,… , 𝑛 (21)

he original pointer network does not include the pair-wise local information (𝑧𝑗(𝑖), 𝜙(𝑥(𝑖), 𝑥𝑗)), and the attention calculation is only
uantified from three learnable parameters 𝑊1,𝑊2, and 𝑊3, which may limit its capacity in prediction. We observe that the original
ointer network without local information performs extremely badly. For a fair comparison, we add the local information with the
imilar format in Eq. (20) as:

𝑢𝑗(𝑖) = 𝑊 𝑇
1 tanh(𝑊2𝑒𝑗 +𝑊3𝑑(𝑖)) +𝑊4

[

𝑧𝑗(𝑖)
𝜙(𝑥(𝑖), 𝑥𝑗)

]

∀𝑖, 𝑗 = 1,… , 𝑛 (22)

fter training the model, we generate the final sequence with the greedy algorithm and Algorithm 1, respectively.
Amazon Last-Mile Routing Research Challenge (ALMRRC) Winning Teams Solutions. As the paper’s data set comes from

he ALMRRC, we also compare our models with the top 3 winning teams in the competition. All top 3 winning teams use TSP-based
ethods. Specifically, Cook et al. (2022) proposed a penalty-based local search algorithm for route optimization in the presence

f a series predefined constraints, including warehouse sorting operations, van-loading processes, and driver preferences (learned
rom the data). Guo et al. (2023) proposed a hierarchical TSP optimization model with a customized cost matrix. The higher level
SP solves for the zone sequence while the lower level TSP solves the intra-zonal stop sequence. The cost matrix is modified to
ccount for warehouse operations, geographical properties, package information, etc. Similarly, Arslan and Abay (2021) used a
enetic algorithm to solve a TSP with modified cost matrix and transformed network. The cost matrix are transformed network are
enerated based on descriptive analysis of the data. The disparity scores of the three teams are shown in Table 1.

.5. Results

.5.1. Model comparison
Table 1 presents the performance of different models. Note that for all approaches except for the TSP, we generate sequences

ased on two different methods (greedy and Algorithm 1) for comparison. TSP cannot be incorporated with Algorithm 1 because
he solution of the TSP is the sequence with the minimal operation cost. Even if we iterate all stops to be the first stop, the final
election (based on minimal operation cost) will still be the TSP solution. The standard deviation of disparity scores is taken over
ll testing routes.

Results show that sequence generation with Algorithm 1 (i.e., iterating different first zones) can consistently reduce the disparity
core for all machine learning methods. It implies that the first zone prediction and the global view (i.e., shortest path) are important
or estimating the driver’s trajectory. In Appendix C, we also evaluate sequence generation methods by fixing the first stop as the
SP sequences. Results show that fixing the first stop as the tour TSP sequence slightly decrease the model’s performance as tour
SP does not predict the first stop well. Fixing the first stop as the open-tour TSP has the similar performance as the greedy-based
ethod.

The proposed method outperforms all other models, both in disparity scores and prediction accuracy. This means the proposed
air-wise ASNN-based attention (Eq. (6)) has better performance than the original content-based attention (Eq. (22)). The
omparison between LSTM-E-D and Pnt Net models demonstrates the effectiveness of the attention mechanism. All machine learning
odels except for LSTM-E-D can outperform the baseline TSP sequence with Algorithm 1 sequence generation method, suggesting

hat the hidden trajectory patterns can be learned from the data. Between two TSP models, the open-tour TSP is better than tour
SP. This implies that drivers, when making their decisions on routing, may ignore their last returning trip to the depot.

Another observation is that, the prediction accuracy and disparity score do not always move in the same direction. For example,
he LSTM-E-D model with Algorithm 1 sequence generation, though has lower accuracy, shows a better disparity score. This is
ecause the accuracy metric does not differentiate ‘‘how wrong an erroneous prediction is’’. By the definition of disparity score, if
stop is 𝑠𝑖 but the prediction is 𝑠𝑗 , and 𝑠𝑗 and 𝑠𝑖 are geographically close to each other, the score does not worsen too much. This

uggests a future research direction in using disparity score as the loss function (e.g., training by RL) instead of cross-entropy loss.
In terms of the comparison with ALMRRC winning team solutions, the performance of the proposed method is similar to that

f the second-place winning team, but worse than the first-place team who predicts the route with a constrained local search.
he reason may be that the local-search rules defined in Cook et al. (2022) have incorporated driver’s preferences and warehouse
perations. And these rules are difficult to be learned by machine learning algorithm if we do not encode them well. Future studies
ay follow the local-search rules in Cook et al. (2022) to design better information extraction mechanisms to improve the model’s
erformance.

Fig. 9 shows the distribution of disparity scores for our proposed method with Algorithm 1 sequence generation (i.e., the best
odel). We observe that the prediction performance varies a lot across different routes. There is a huge proportion of routes with

ery small disparity scores (less than 0.01). The mean score is impacted by outlier routes. The median score is 0.0340, which is
12

maller than the mean value.

Transportation Research Part E 175 (2023) 103168B. Mo et al.
Table 1
Model performance.

Sequence generation Model Disparity score Prediction accuracy

Mean Std. Dev 1st zone 2nd zone 3rd zone 4th zone

– Tour TSP 0.0443 0.0289 0.207 0.185 0.163 0.168
– Open-tour TSP 0.0430 0.0302 0.270 0.244 0.227 0.232

Greedy

ASNN 0.0470 0.0289 0.150 0.141 0.119 0.123
LSTM-E-D 0.0503 0.0313 0.207 0.183 0.161 0.166
Pnt Net 0.0460 0.0309 0.224 0.204 0.186 0.165
Ours 0.0417 0.0306 0.241 0.231 0.224 0.221

Algorithm 1

ASNN 0.0429 0.0299 0.221 0.213 0.203 0.195
LSTM-E-D 0.0501 0.0305 0.182 0.156 0.142 0.149
Pnt Net 0.0382 0.0301 0.286 0.273 0.262 0.274
Ours 0.0369 0.0301 0.320 0.310 0.303 0.314

Amazon Last-Mile
Routing Research Challenge
Winning Teams Solutions

Cook et al. (2022) 0.0198 N.A. N.A. N.A. N.A. N.A.
Guo et al. (2023) 0.0381 N.A. N.A. N.A. N.A. N.A.
Arslan and Abay (2021) 0.0367 N.A. N.A. N.A. N.A. N.A.

Fig. 9. Disparity score distribution of the best model.

5.5.2. Factors on trajectory predictability
As our proposed model exhibits various levels of predictability across different routes, we aim to investigate which attributes of

a route cause high (or low) predictability. This can be done by running a regression model with the disparity score as the dependent
variable and route attributes (e.g., locations, departure time, package numbers) as independent variables. The variables used are
defined as follows:

• Total planned service time: The estimated time to deliver all packages in the route (service time only, excluding travel time).
• Earliest time window constraint: The earliest due time to deliver packages with time window constraint minus the vehicle

departure time. The smaller the value, the tighter the time limit.
• Avg. # traffic signals: Average number of traffic signals in each zone of the route (obtained from OpenStreetMap data).
• If high-quality route: A dummy variable indicating whether the route is labeled as ‘‘high quality’’ by Amazon or not (Yes = 1).

High quality means the routes have better driver experience, customer satisfaction, and productivity (Merchán et al., 2022).
• If in Location: A dummy variable indicating whether the route is in a specific city or not (Yes = 1).
• If departure Time: A dummy variable indicating the (local) departure time (e.g., before 7AM, after 10AM).

Table 2 shows the results of the regression. Since the dependent variable is disparity scores, a negative sign indicates a positive
impact on the predictability. We observe that routes with tighter time window constraints and more stops are easier to predict.
This may be due to the fact that these routes are usually harder to deliver. Hence, to avoid the risk of violating time constraints or
delay, drivers tend to follow the planned routes and thus the route sequences are easier predict. We also find that routes associated
with larger vans (i.e., larger vehicle capacity) are more predictable. The reason may be that larger vans are less flexible in choosing
different routes, thus drivers are more likely to follow the navigation. Another important factor for better predictability is high-
quality routes. This may be because high-quality routes are closer to the TSP sequence which we use as inputs. Finally, routes in
LA are more predictable than in other areas such as Chicago and Boston.
13

Transportation Research Part E 175 (2023) 103168B. Mo et al.

p
b

5

o
(
i
t

a
p
t
P
a

5

o
o
s
f

i
c
s
h

5

a
s

Table 2
Factors on trajectory predictability.

Variables Coefficients (×10−3) Variables Coefficients (×10−3)

Intercept 91.93** If high quality route −5.381**
Total # of packages 0.079* If in LA −5.312*
Total planned service time −0.451 If in Chicago 0.278
Earliest time window constraint −2.970** If in Boston −4.258
Avg. # traffic signals −3.231 If on weekends 1.761
Total # of stops −0.171** If departure before 7AM 0.617
Vehicle capacity (m3) −5.821* If departure after 10AM −2.770

Number of routes: 1223.
𝑅2: 0.072;
**𝑝-value < 0.01.
*𝑝-value < 0.05.

Table 3
Model performance without TSP information.

Sequence generation Model Disparity score Prediction accuracy

Mean Std. Dev 1st zone 2nd zone 3rd zone 4th zone

Greedy
LSTM-E-D 0.1176 0.0498 0.045 0.047 0.041 0.050
Pnt Net 0.0512 0.0323 0.090 0.096 0.097 0.096
Ours 0.0426 0.0311 0.204 0.192 0.195 0.196

Algorithm 1
LSTM-E-D 0.1054 0.0463 0.103 0.061 0.049 0.052
Pnt Net 0.0398 0.0311 0.298 0.284 0.273 0.273
Ours 0.0376 0.0307 0.316 0.298 0.302 0.298

It is worth noting that the regression model’s 𝑅2 is relatively small (0.072), implying a low goodness-of-fit. However, the
urpose of the regression to identify factors that affect the trajectories’ predictability and provides insights on understanding drivers’
ehavior. Therefore, it suffices for us to focus on statistically significant parameters (e.g., 𝑝-value < 0.05), rather than 𝑅2.

.5.3. Impact of input sequence
All machine learning models in Table 1 (except for ASNN) have the LSTM encoder component, which requires the specification

f input zone sequence. The input for the encoder is a ‘‘sequence’’. The role of encoder is to transforms a sequence of features
𝑥1,… , 𝑥𝑛) into a sequence of embedded representation (𝑒1,… , 𝑒𝑛). And the hidden vector of the last time step (ℎE

𝑛) is expected to
nclude the global information of the whole sequence. Therefore, different input sequences may affect the information extraction in
he LSTM encoder component.

As mentioned in Section 5.2, we currently use the TSP sequence as input. It is worth exploring the model performance if we use
random zone sequence instead, which corresponds to the scenario without planned route information. Table 3 shows the model

erformance without the TSP sequence information. Since the ASNN result does not rely on TSP information, it is not listed in the
able. Results show that the LSTM-E-D model becomes much worse with a random sequence as inputs, while the performance of
nt Net and our method is only slightly affected. Even without the planned route information, the proposed model can still provide
reasonable estimation of driver trajectories.

.5.4. Computational time comparison
In addition to prediction performance, we also compare the models’ computational time. Table 4 shows the computational time

f all models in a personal computer of I9-9900K CPU. For the TSP models, we report the solution time for the testing data set
f 1223 routes since it does not require a training process. The models are solved with Gurobi integer optimization solver with
ubtour elimination as laze constraints. For all machine learning models, we report the model’s training time. The evaluation time
or generating routes are negligible compared to the training time.

Results show that the TSP models have the lowest computational time. The reason is that Gurobi solvers with laze constraint
mplementation is efficient. Another reason is that we only solve for zone sequences. The number of zones is relatively small. In the
ases where we have more and longer routes, the computational time for TSP methods can be large (i.e., these methods are not as
calable as machine learning methods). Among all machine learning models, our proposed method, due to its network complexity,
as the largest training time.

.6. Summary

Our numerical results show that our proposed model outperforms its benchmarks in terms of disparity scores and prediction
ccuracy, meaning that it can better predict the actual route trajectories taken by drivers. The comparison with benchmark models
14

hows that our proposed ASNN-based pair-wise attention mechanism and our sequence generation algorithm (Algorithm 1) are both

Transportation Research Part E 175 (2023) 103168B. Mo et al.

d
a
a
(
t

C
t
d
0
g
2
C
f

p
e
T
d
m
t
t
m
a
(

s
a
a
p
o

C

V

Table 4
Computational time comparison.

Model CPU time (s) Model CPU time (s)

Open Tour TSP 49.1 Tour TSP 83.9
LSTM-E-D 176.0 Pnt Net 397.6
ASNN 277.9 Ours 2132.7

helpful for the prediction. Moreover, we can observe that the predictive performance varies across different routes. Factors such
as route quality, delivery time windows, and the total number of stops of a route affect predictability. Finally, the proposed model
is insensitive to the input sequence. The prediction performance only slightly decreases when the input sequence is changed from
the TSP solution to a random stop sequence. This property implies that we only need the set of stops to implement the model and
obtain high-quality solution, while information on the planned route sequence is not strictly required.

6. Conclusion and future research

In this paper, we propose a pair-wise attention-based pointer neural network that predicts actual driver trajectories on last-mile
elivery routes for given sets of delivery stops. Compared to previously proposed pointer networks, this study leverages a new
lternative specific neural network-based attention mechanism to incorporate pair-wise local information (such as relative distances
nd locations of stops) for the attention calculation. To better capture the global efficiency of a route in terms of operational cost
i.e., total travel time), we further propose a new sequence generation algorithm that finds the lowest-cost route sequence by iterating
hrough different first stops.

We apply our proposed method to a large set of real operational route data provided by the Amazon Last-Mile Routing Research
hallenge in 2021. The results show that our proposed method can outperform a wide range of benchmark models in terms of both
he disparity score and prediction accuracy, meaning that the predicted route sequence is closer to the actual sequence executed by
rivers. Compared to the best benchmark model (original pointer network), our method reduces the disparity score from 0.0382 to
.0369, and increases the average prediction accuracy of the first four zones from 0.229 to 0.312. Moreover, our proposed sequence
eneration method can consistently improve the prediction performance for all models. The disparity scores are reduced by 10%–
0% across different models. Lastly, we show that the proposed methodology is robust against changes in the input sequence pattern.
ompared to an optimal TSP solution as the input sequence, a random input sequence only slightly increases the disparity score

rom 0.0369 to 0.0376.
The data-driven route planning method proposed in this paper has several highly relevant practical implications. First, our

roposed model performs well at predicting stop sequences that would be preferable to delivery drivers in a real operational
nvironment, even if it is not provided with a theoretically optimal (i.e., minimal route duration) planned TSP sequence as an input.
herefore, the model can be used to generate a predicted actual stop sequence that a driver would likely be taking for a given set of
elivery stops. The prediction can serve as a new ‘‘empirical’’ planned route that is informed by historical driver behavior and thus
ore consistent with the driver’s experience and preferences. Second, by comparing the stop sequence predicted by our model with

he traditional, TSP-based planned stop sequence, a route planner may infer potential reasons for the drivers’ deviations and adjust
he company’s planning procedures and/or driver incentives if necessary. Third, as stop sequence generation using machine learning
odels is computationally more efficient than traditional optimization-based approaches, a trained machine learning model can be

pplied in real-time to quickly re-optimize routes when drivers are unexpectedly forced to deviate from their original stop sequence
e.g., due to road closures) and need updated routing strategies.

Based on the work presented in this paper, a number of fruitful future research avenues arise. First, instead of focusing on
top sequence prediction, future work may improve the interpretability of such prediction models and develop machine learning
pproaches that better explain which factors cause drivers to deviate from a planned stop sequence and how they affect their
ctual route trajectories (Mo et al., 2021). Second, future work should attempt to combine the strengths of optimization-based route
lanning approaches and machine learning by incorporating tacit driver knowledge learned via machine learning models into route
ptimization algorithms.

RediT authorship contribution statement

Baichuan Mo: Conceptualization, Methodology, Software, Data curation, Writing – original draft, Writing – review & editing,
isualization. Qingyi Wang: Conceptualization, Methodology, Software, Writing – review & editing. Xiaotong Guo: Conceptual-

ization, Methodology, Software, Writing – review & editing. Matthias Winkenbach: Supervision. Jinhua Zhao: Supervision.

Declaration of competing interest
15

The authors declare no conflict of interest.

Transportation Research Part E 175 (2023) 103168B. Mo et al.

s

Appendix A. Mathematical formulation of a LSTM cell

The details of an LSTM cell, ℎ𝑡, 𝑒𝑡 = LSTM(𝑥𝑡, ℎ𝑡−1; 𝜃), is shown below:

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (A.1)

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (A.2)

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (A.3)

𝑐𝑡 = 𝜎𝑐 (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (A.4)

𝑐𝑡 = 𝑓𝑡◦𝑐𝑡−1 + 𝑖𝑡◦𝑐𝑡 (A.5)

ℎ𝑡 = 𝑜𝑡◦𝜎ℎ(𝑐𝑡) (A.6)

𝑒𝑡 = ℎ𝑡 (if this is a single layer one-directional LSTM) (A.7)

where [𝑊𝑓 ,𝑊𝑖,𝑊𝑜,𝑊𝑐 , 𝑈𝑓 , 𝑈𝑖, 𝑈𝑜, 𝑈𝑐 , 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝑐] = 𝜃 is the vector of learnable parameters. 𝑥𝑡 is the input vector to the LSTM unit.
𝑓𝑡 is the forget gate’s activation vector. 𝑖𝑡 is the input/update gate’s activation vector. 𝑜𝑡 is the output gate’s activation vector. ℎ𝑡 is
the hidden state vector. 𝑒𝑡 is the output vector of the LSTM. Note that for a multi-layer or bidirectional LSTM, 𝑒𝑡 may not equal to
ℎ𝑡. In this study, we use a single layer one-directional LSTM and thus have 𝑒𝑡 = ℎ𝑡. More details on the output vector can be found
in Pytorch (2021). 𝑐𝑡 is the cell input activation vector. 𝑐𝑡 is the cell state vector. ‘‘◦’’ indicates the component-wise multiplication.

Appendix B. From zone sequence to stop sequence

The complete stop sequence is generated based on the given zone sequence. The detailed generation process is shown in
Algorithm 2.

Algorithm 2 Complete sequence generation. Input: zone sequence (�̂�(1), .., �̂�(𝑛)), depot 𝐷 , set of stops in each zone (𝑖), 𝑖 = 1, ..., 𝑛.
PathTSP( , 𝑠𝑓𝑖𝑟𝑠𝑡, 𝑠𝑙𝑎𝑠𝑡) and TourTSP() are two oracle functions for solving path and tour TSP problems given the set of stops ,
first stop 𝑠𝑓𝑖𝑟𝑠𝑡 and last stop 𝑠𝑙𝑎𝑠𝑡 to be visited.

1: function CompleteSeqGeneration((�̂�(1), .., �̂�(𝑛)), {(𝑖), 𝑖 = 1, , , 𝑛})
2: 𝑠𝑝𝑟𝑒𝑣 ← 𝐷

3: 𝑠∗𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ← (𝑠𝑝𝑟𝑒𝑣) ⊳ Initialize the complete stop sequence with depot
4: for 𝑖 ∈ {1, ..., 𝑛 − 1} do
5: 𝑓𝑖𝑟𝑠𝑡 ← Set of three stops in (𝑖) that are closest to 𝑠𝑝𝑟𝑒𝑣
6: 𝑙𝑎𝑠𝑡 ← Set of three stops in (𝑖) that are closest to all stops in 𝑖+1 on average
7: (𝑖) ← ∅ ⊳ Initialize the set of optimal paths in zone �̂�(𝑖)
8: for 𝑠𝑓𝑖𝑟𝑠𝑡 ∈ 𝑓𝑖𝑟𝑠𝑡 do
9: for 𝑠𝑙𝑎𝑠𝑡 ∈ 𝑙𝑎𝑠𝑡 do

10: if 𝑠𝑓𝑖𝑟𝑠𝑡 = 𝑠𝑙𝑎𝑠𝑡 then
11: �̂�temp, 𝑡temp = TourTSP((𝑖)) ⊳ Solve the optimal tour and travel time for zone �̂�(𝑖)
12: Delete the last edge back to 𝑠𝑓𝑖𝑟𝑠𝑡 in the tour �̂�temp. Let the new path and travel time be �̂�′temp and 𝑡′temp
13: Add �̂�′temp and 𝑡′temp to (𝑖)
14: else
15: �̂�temp, 𝑡temp = PathTSP((𝑖), 𝑠𝑓𝑖𝑟𝑠𝑡, 𝑠𝑙𝑎𝑠𝑡) ⊳ Solve the optimal path and travel time for zone 𝑖
16: Add �̂�temp and 𝑡temp to (𝑖)

17: �̂�(𝑖) ← Path in (𝑖) with the minimum travel time
18: 𝑠∗𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ← (𝑠∗𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, �̂�(𝑖)) ⊳ Concatenate two sequence
19: 𝑠𝑝𝑟𝑒𝑣 ← Last stop of path �̂�(𝑖)
20: 𝑠∗𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ← (𝑠∗𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝐷

) ⊳ Concatenate the last stop as the depot
21: return 𝑠∗𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

Consider an optimal zone sequence, (�̂�(1),… , �̂�(𝑛)), generated from the proposed machine learning method. We can always add
the depot before the first and after last zone (i.e., (𝐷 , �̂�(1),… , �̂�(𝑛), 𝐷)) and make the whole zone sequence a loop. For each zone
�̂�(𝑖), we aim to generate a within-zone path �̂�(𝑖), and the final stop sequence will be (𝐷 , �̂�(𝑖),… , �̂�(𝑛), 𝐷).

When generating �̂�(𝑖) for zone �̂�(𝑖), we assume �̂�(𝑖−1) is known (generated from the last step and �̂�(0) = (𝐷)). Let the set of all
tops in zone �̂�(𝑖) be (𝑖). We identify three potential first stops and last stops of path �̂�(𝑖) based on following rules:

• Three potential first stops of �̂�(𝑖) are the three most closest stops (in travel time) to �̂�(𝑖−1)’s last stop.
• Three potential last stops of �̂�(𝑖) are the three most closest stops (in travel time) to all stops in (𝑖+1) on average. Note that



16

(𝑛+1) = {𝐷 }

Transportation Research Part E 175 (2023) 103168B. Mo et al.

t
s
t

t

Table C.5
Model performance with TSP-based first stop.

Sequence generation Model Disparity score Prediction accuracy

Mean Std. Dev 1st zone 2nd zone 3rd zone 4th zone

Tour TSP-based
LSTM-E-D 0.0503 0.0313 0.207 0.183 0.161 0.166
Pnt Net 0.0472 0.0315 0.207 0.191 0.177 0.150
Ours 0.0429 0.0309 0.207 0.203 0.195 0.193

Open-tour TSP-based
LSTM-E-D 0.0531 0.0316 0.270 0.178 0.142 0.146
Pnt Net 0.0457 0.0314 0.270 0.231 0.209 0.184
Ours 0.0419 0.0303 0.270 0.250 0.231 0.229

Table D.6
Model performance comparison for high and non-high quality routes.

Route sets (# routes) Model Disparity score

Mean Median

High-quality (551)
LSTM-E-D 0.0487 0.0447
Pnt Net 0.0374 0.0347
Ours 0.0352 0.0319

Non-high-quality (672)
LSTM-E-D 0.0514 0.0477
Pnt Net 0.0389 0.0341
Ours 0.0391 0.0357

With three potential first stops and last stops, we then solve path TSP problems between any first and last stop pair to generate
he potential optimal inner zone path with the shortest travel time. In this step, at most nine small-scale path TSP problems will be
olved since there might be overlapping between the first and the last stops. If the first and the last stops are identical, we solve a
our TSP problem and output the path by deleting the last edge which traverses back to the first stop in the tour.

After having all potential inner zone paths and total path travel time between any first and last stop pair, we keep the path with
he minimum travel time as the inner zone sequence, �̂�(𝑖). The key assumption we make here about drivers is that they will deliver

packages within a zone following a path that minimizes their total travel time. With the optimal inner zone stop sequence of the
current zone, we then move to the next visited zone in the optimal zone sequence and repeat the same procedure until we generate
the complete stop sequence.

Appendix C. TSP-based first stop for sequence generation

In Algorithm 1, we propose to generate sequences by iterating different first stops. Results in Table 1 show that the prediction
of the first stop is important. In this section, we tested another way of determining the first stop by using the first stop predicted
by both tour TSP and open-tour TSP (referred to as TSP-based). Results are shown in Table C.5.

We observe that using the tour TSP-based first stop for sequence generation slightly decrease all model’s performance compared
to greedy-based sequence (compared to Table 1). The reason may be that tour TSP does not predict the first stop well (with
prediction accuracy of 0.207), thus affecting the following sequence generation accuracy. The open-tour TSP-based first stop
sequence generation shows the similar performance as the greedy-based approach.

Appendix D. Analysis of high-quality routes

High-quality routes are those with better driver experience, customer satisfaction, and productivity (Merchán et al., 2022). There
are a total of 2718 high-quality routes out of the 6112 trajectories (551 out of the 1223 testing data set). In Section 5.5.2, we have
shown that high-quality routes are easier to predict using machine learning models. To better quantify the differences, we compare
the model prediction performance of high-quality and non-high-quality routes (Table D.6). On average, the high-quality scores show
around 6.4% lower mean disparity scores.

The better model performance in high-quality routes implies that the model’s route generation is more aligned with the high-
quality routes. This shows a promising implementation of machine learning methods in route planning. That is, instead of generating
planned routes using optimization methods, we can directly generate routes using machine learning models. And it can potentially
be better (i.e., higher quality) than the lowest cost routes. However, one thing to notice is that machine learning approaches are
a black box. It may be dangerous to fully trust the routes generated by machine learning models. On another hand, since route
quality is a post-execution indicator (as it includes information about the driver’s and customer’s experience), there is no way to
pre-quantify the route quality. To implement machine learning methods, we may need real-world A/B testing to validate the model’s
actual performance, and use guardrail metrics (such as operation cost and detouring rates) to eliminate nonsense routes generated
by machine learning models.

Since we do not have the exact definition of route quality, to better understand high-quality routes, we conduct a logistic
regression using the dummy variable ‘‘If high-quality route’’ (Yes = 1) as the dependent variable to figure out the properties of
17

Transportation Research Part E 175 (2023) 103168B. Mo et al.
Table D.7
Results of logistic regression for high-quality routes.

Variables Coefficients Variables Coefficients

Intercept −2.11** If on weekends 0.099
Total # of packages 0.015** If in LA −0.100
Total planned service time 0.046 If in Chicago −0.291**
Earliest time window constraint 0.025 If in Boston −5.237**
Avg. # traffic signals 0.371* If departure before 7AM 0.069
Total # of stops −0.021** If departure after 10AM −0.156
Vehicle capacity (m3) 0.294**

Number of routes: 6112.
Log-Likelihood: −3901.7, Log-Likelihood Null: −4199.1; Pseudo 𝑅2: 0.071
**𝑝-value < 0.01.
*𝑝-value < 0.05.

high-quality routes. All 6112 routes are used as samples. Results are shown in Table D.7. We observe that routes with a higher
number of packages, more traffic signals along the route, and larger vehicles are more likely to be high-quality routes. The reason
can be that, routes with high package volumes may be more productive for drivers because they are more likely to deliver a bundle
of packages together. Routes with more traffic signals may be in urban areas and the driver’s local knowledge are more useful
with more complex traffic conditions (thus more likely to be high-quality). And routes with larger vehicle capacity are more likely
to be assigned to experienced drivers, which are also more likely to be high-quality. Factors that make a route less likely to be
high-quality include more stops and locations in Chicago and Boston (as opposed to Austin, LA, and Seattle). The reason may be
that these factors all imply higher route complexity.

References

Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J., 2006. The travelling salesman problem. In: The Traveling Salesman Problem: A Computational Study.
Princeton University Press, URL http://www.jstor.org/stable/j.ctt7s8xg.9.

Arslan, O., Abay, R., 2021. Data-Driven Vehicle Routing in Last Mile Delivery. Bureau de Montreal, Université de Montreal.
Bahdanau, D., Cho, K.H., Bengio, Y., 2015. Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings.
Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S., 2019. Neural combinatorial optimization with reinforcement learning. In: 5th International Conference on

Learning Representations, ICLR 2017 - Workshop Track Proceedings. pp. 1–15.
Cheikhrouhou, O., Khoufi, I., 2021. A comprehensive survey on the multiple traveling salesman problem: Applications, approaches and taxonomy. Comp. Sci.

Rev. 40, 100369. http://dx.doi.org/10.1016/j.cosrev.2021.100369.
Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical

machine translation. In: Conference on Empirical Methods in Natural Language Processing. EMNLP 2014.
Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y., 2015. Attention-based models for speech recognition. arXiv preprint arXiv:1506.07503.
Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
Cook, W., Held, S., Helsgaun, K., 2022. Constrained local search for last-mile routing. Transp. Sci..
Cortes, J.D., Suzuki, Y., 2021. Last-mile delivery efficiency: En route transloading in the parcel delivery industry. Int. J. Prod. Res. 1–18. http://dx.doi.org/10.

1080/00207543.2021.1907628.
da Silva, R.F., Urrutia, S., 2010. A general VNS heuristic for the traveling salesman problem with time windows. Discrete Optim. 7 (4), 203–211. http:

//dx.doi.org/10.1016/j.disopt.2010.04.002.
Davendra, D., Bialic-Davendra, M., 2020. Introductory chapter: Traveling salesman problem - An overview. In: Novel Trends in the Traveling Salesman Problem.

IntechOpen, http://dx.doi.org/10.5772/intechopen.94435.
Graves, A., 2013. Generating sequences with recurrent neural networks. URL http://arxiv.org/abs/1308.0850.
Guo, X., Mo, B., Wang, Q., 2023. Amazon last-mile delivery trajectory prediction using hierarchical TSP with customized cost matrix. arXiv preprint

arXiv:2302.02102.
Guo, X., Samaranayake, S., 2022. Shareability network based decomposition approach for solving large-scale single school routing problems. Transp. Res. C 140,

103691. http://dx.doi.org/10.1016/j.trc.2022.103691, URL https://www.sciencedirect.com/science/article/pii/S0968090X22001322.
Halim, A.H., Ismail, I., 2017. Combinatorial optimization: Comparison of heuristic algorithms in travelling salesman problem. Arch. Comput. Methods Eng. 26

(2), 367–380. http://dx.doi.org/10.1007/s11831-017-9247-y.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8), 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735, arXiv:https:

//direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.
Huang, C.Z.A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A.M., Hoffman, M.D., Dinculescu, M., Eck, D., 2018. Music transformer.

arXiv preprint arXiv:1809.04281.
Jonker, R., Volgenant, T., 1983. Transforming asymmetric into symmetric traveling salesman problems. Oper. Res. Lett. 2 (4), 161–163. http://dx.doi.org/10.

1016/0167-6377(83)90048-2.
Joshi, C.K., Laurent, T., Bresson, X., 2019. On learning paradigms for the travelling salesman problem. Adv. Neural Inf. Process. Syst. 1–9, URL http:

//arxiv.org/abs/1910.07210.
Karatzoglou, A., Jablonski, A., Beigl, M., 2018. A Seq2Seq learning approach for modeling semantic trajectories and predicting the next location. In: Proceedings of

the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. SIGSPATIAL ’18, Association for Computing Machinery,
New York, NY, USA, pp. 528–531. http://dx.doi.org/10.1145/3274895.3274983.

Kool, W., Van Hoof, H., Welling, M., 2019. Attention, learn to solve routing problems! In: 7th International Conference on Learning Representations. ICLR 2019,
pp. 1–25.

Küçükoğlu, İ., Dewil, R., Cattrysse, D., 2019. Hybrid simulated annealing and tabu search method for the electric travelling salesman problem with time windows
and mixed charging rates. Expert Syst. Appl. 134, 279–303. http://dx.doi.org/10.1016/j.eswa.2019.05.037.

Liang, Z., Du, J., Li, C., 2020. Abstractive social media text summarization using selective reinforced Seq2Seq attention model. Neurocomputing 410, 432–440.
18

http://www.jstor.org/stable/j.ctt7s8xg.9
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb2
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb3
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb3
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb3
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb4
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb4
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb4
http://dx.doi.org/10.1016/j.cosrev.2021.100369
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb6
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb6
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb6
http://arxiv.org/abs/1506.07503
http://arxiv.org/abs/1412.3555
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb9
http://dx.doi.org/10.1080/00207543.2021.1907628
http://dx.doi.org/10.1080/00207543.2021.1907628
http://dx.doi.org/10.1080/00207543.2021.1907628
http://dx.doi.org/10.1016/j.disopt.2010.04.002
http://dx.doi.org/10.1016/j.disopt.2010.04.002
http://dx.doi.org/10.1016/j.disopt.2010.04.002
http://dx.doi.org/10.5772/intechopen.94435
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/2302.02102
http://dx.doi.org/10.1016/j.trc.2022.103691
https://www.sciencedirect.com/science/article/pii/S0968090X22001322
http://dx.doi.org/10.1007/s11831-017-9247-y
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
http://arxiv.org/abs/1809.04281
http://dx.doi.org/10.1016/0167-6377(83)90048-2
http://dx.doi.org/10.1016/0167-6377(83)90048-2
http://dx.doi.org/10.1016/0167-6377(83)90048-2
http://arxiv.org/abs/1910.07210
http://arxiv.org/abs/1910.07210
http://arxiv.org/abs/1910.07210
http://dx.doi.org/10.1145/3274895.3274983
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb22
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb22
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb22
http://dx.doi.org/10.1016/j.eswa.2019.05.037
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb24

Transportation Research Part E 175 (2023) 103168B. Mo et al.

L

L

L
M

M

M

M

M

M

P
P

P

P
R

R

S

S

S

T
U

U

V

V

V
W

W

W

W

X

Y

Z

Z

Z

Lim, S.F.W., Winkenbach, M., 2019. Configuring the last-mile in business-to-consumer e-retailing. Calif. Manage. Rev. 61 (2), 132–154.
Liu, S., Jiang, H., Chen, S., Ye, J., He, R., Sun, Z., 2020. Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning.

Transp. Res. Part E: Logist. Transp. Rev. 142, 102070. http://dx.doi.org/10.1016/j.tre.2020.102070, URL https://www.sciencedirect.com/science/article/pii/
S1366554520307213.

iu, T., Wang, K., Sha, L., Chang, B., Sui, Z., 2018. Table-to-text generation by structure-aware seq2seq learning. In: Thirty-Second AAAI Conference on Artificial
Intelligence.

u, Y., Rai, H., Chang, J., Knyazev, B., Yu, G., Shekhar, S., Taylor, G.W., Volkovs, M., 2021. Context-aware scene graph generation with Seq2Seq transformers.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15931–15941.

uong, M.T., Pham, H., Manning, C.D., 2015. Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
a, Q., Ge, S., He, D., Thaker, D., Drori, I., 2019. Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. URL

http://arxiv.org/abs/1911.04936.
atai, R., Singh, S., Lal, M., 2010. Traveling salesman problem: An overview of applications, formulations, and solution approaches. In: Traveling Salesman

Problem, Theory and Applications. InTech, http://dx.doi.org/10.5772/12909.
cKinsey & Company, 2021. How e-commerce share of retail soared across the globe: A look at eight countries. URL https://www.mckinsey.com/featured-

insights/coronavirus-leading-through-the-crisis/charting-the-path-to-the-next-normal/how-e-commerce-share-of-retail-soared-across-the-globe-a-look-at-
eight-countries.

erchán, D., Arora, J., Pachon, J., Konduri, K., Winkenbach, M., Parks, S., Noszek, J., 2022. 2021 Amazon last mile routing research challenge: Data set. Transp.
Sci. http://dx.doi.org/10.1287/trsc.2022.1173.

ladenović, N., Todosijević, R., Urošević, D., 2012. An efficient GVNS for solving traveling salesman problem with time windows. Electron. Notes Discrete Math.
39, 83–90. http://dx.doi.org/10.1016/j.endm.2012.10.012.

o, B., Zhao, Z., Koutsopoulos, H.N., Zhao, J., 2021. Individual mobility prediction in mass transit systems using smart card data: An interpretable activity-based
hidden Markov approach. IEEE Trans. Intell. Transp. Syst. 23 (8), 12014–12026.

itney Bowes, 2020. Pitney bowes parcel shipping index. URL https://www.pitneybowes.com/us/shipping-index.html.
ostnord, 2021. E-Commerce in Europe 2020 - How the Pandemic Is Changing E-Commerce in Europe. Technical Report, URL https://www.postnord.se/siteassets/

pdf/rapporter/e-commerce-in-europe-2020.pdf.
urkayastha, R., Chakraborty, T., Saha, A., Mukhopadhyay, D., 2020. Study and analysis of various heuristic algorithms for solving travelling salesman problem—A

survey. In: Advances in Intelligent Systems and Computing. Springer Singapore, pp. 61–70. http://dx.doi.org/10.1007/978-981-15-2188-1_5.
ytorch, 2021. Pytorch LSTM document. URL https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html.
en, S., Choi, T.M., Lee, K.M., Lin, L., 2020. Intelligent service capacity allocation for cross-border-E-commerce related third-party-forwarding logistics

operations: A deep learning approach. Transp. Res. Part E: Logist. Transp. Rev. 134, 101834. http://dx.doi.org/10.1016/j.tre.2019.101834, URL https:
//www.sciencedirect.com/science/article/pii/S1366554519311688.

ose, W.J., Mollenkopf, D.A., Autry, C., Bell, J., 2016. Exploring urban institutional pressures on logistics service providers. Int. J. Phys. Distrib. Logist. Manag.
46 (2), http://dx.doi.org/10.1108/09600035199500001.

alman, R., Ekstedt, F., Damaschke, P., 2020. Branch-and-bound for the precedence constrained generalized traveling salesman problem. Oper. Res. Lett. 48 (2),
163–166.

noeck, A., Winkenbach, M., 2021. A discrete simulation-based optimization algorithm for the design of highly responsive last-mile distribution networks. Transp.
Sci. 56 (1), 201–222. http://dx.doi.org/10.1287/trsc.2021.1105.

utskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 4,
(no. January), pp. 3104–3112.

raub, V., Vygen, J., Zenklusen, R., 2021. Reducing path TSP to TSP. SIAM J. Comput. STOC20–24–STOC20–53. http://dx.doi.org/10.1137/20m135594x.
nited Nations Department of Economic and Social Affairs, 2019. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). Technical Report, New

York: United Nations, URL https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf.
S Census Bureau, 2021. Quarterly E-Commerce Retail Sales 2nd Quarter 2021. Technical Report, U.S. Census Bureau of the Department of Commerce, URL

http://www2.census.gov/retail/releases/historical/ecomm/07q4.pdf.
aswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process.

Syst. 2017-Decem, 5999–6009, URL http://arxiv.org/abs/1706.03762, arXiv:1706.03762.
inyals, O., Bengio, S., Kudlur, M., 2016. Order matters: Sequence to sequence for sets. In: 4th International Conference on Learning Representations, ICLR 2016

- Conference Track Proceedings. pp. 1–11.
inyals, O., Fortunato, M., Jaitly, N., 2015. Pointer networks. In: Advances in Neural Information Processing Systems. 28,.
ang, S., Cao, J., Chen, H., Peng, H., Huang, Z., 2020a. SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction 6 (4).

http://dx.doi.org/10.1145/3378889.
ang, S., Mo, B., Zhao, J., 2020b. Deep neural networks for choice analysis: Architecture design with alternative-specific utility functions. Transp. Res. C 112,

234–251. http://dx.doi.org/10.1016/J.TRC.2020.01.012.
inkenbach, M., Parks, S., Noszek, J., 2021. Technical proceedings of the amazon last mile routing research challenge. URL https://dspace.mit.edu/handle/1721.

1/131235.
u, R., Zhuang, Y., Xu, K., Zhang, H., Chen, B., 2020. PQ-NET: A generative part Seq2Seq network for 3D shapes. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. CVPR.
u, Z., Wang, S., Zhu, F., Huang, J., 2017. Seq2seq fingerprint: An unsupervised deep molecular embedding for drug discovery. In: Proceedings of the 8th ACM

International Conference on Bioinformatics, Computational Biology,and Health Informatics. In: ACM-BCB ’17, Association for Computing Machinery, New
York, NY, USA, pp. 285–294. http://dx.doi.org/10.1145/3107411.3107424.

uan, Y., Cattaruzza, D., Ogier, M., Semet, F., 2020. A branch-and-cut algorithm for the generalized traveling salesman problem with time windows. European
J. Oper. Res. 286 (3), 849–866.

ax, D., 2013. Brown down: UPS drivers vs. The UPS algorithm. URL https://www.fastcompany.com/3004319/brown-down-ups-drivers-vs-ups-algorithm.
(Accessed 14 February 2023).

hang, Y., Li, D., Wang, Y., Fang, Y., Xiao, W., 2019. Abstract text summarization with a convolutional Seq2seq model. Appl. Sci. 9 (8), http://dx.doi.org/10.
3390/app9081665, URL https://www.mdpi.com/2076-3417/9/8/1665.

hang, Y., Li, Y., Zhang, G., 2020. Short-term wind power forecasting approach based on Seq2Seq model using NWP data. Energy 213, 118371. http:
//dx.doi.org/10.1016/j.energy.2020.118371, URL https://www.sciencedirect.com/science/article/pii/S036054422031478X.
19

http://refhub.elsevier.com/S1366-5545(23)00156-4/sb25
http://dx.doi.org/10.1016/j.tre.2020.102070
https://www.sciencedirect.com/science/article/pii/S1366554520307213
https://www.sciencedirect.com/science/article/pii/S1366554520307213
https://www.sciencedirect.com/science/article/pii/S1366554520307213
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb27
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb27
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb27
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb28
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb28
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb28
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1911.04936
http://dx.doi.org/10.5772/12909
https://www.mckinsey.com/featured-insights/coronavirus-leading-through-the-crisis/charting-the-path-to-the-next-normal/how-e-commerce-share-of-retail-soared-across-the-globe-a-look-at-eight-countries
https://www.mckinsey.com/featured-insights/coronavirus-leading-through-the-crisis/charting-the-path-to-the-next-normal/how-e-commerce-share-of-retail-soared-across-the-globe-a-look-at-eight-countries
https://www.mckinsey.com/featured-insights/coronavirus-leading-through-the-crisis/charting-the-path-to-the-next-normal/how-e-commerce-share-of-retail-soared-across-the-globe-a-look-at-eight-countries
https://www.mckinsey.com/featured-insights/coronavirus-leading-through-the-crisis/charting-the-path-to-the-next-normal/how-e-commerce-share-of-retail-soared-across-the-globe-a-look-at-eight-countries
https://www.mckinsey.com/featured-insights/coronavirus-leading-through-the-crisis/charting-the-path-to-the-next-normal/how-e-commerce-share-of-retail-soared-across-the-globe-a-look-at-eight-countries
http://dx.doi.org/10.1287/trsc.2022.1173
http://dx.doi.org/10.1016/j.endm.2012.10.012
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb35
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb35
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb35
https://www.pitneybowes.com/us/shipping-index.html
https://www.postnord.se/siteassets/pdf/rapporter/e-commerce-in-europe-2020.pdf
https://www.postnord.se/siteassets/pdf/rapporter/e-commerce-in-europe-2020.pdf
https://www.postnord.se/siteassets/pdf/rapporter/e-commerce-in-europe-2020.pdf
http://dx.doi.org/10.1007/978-981-15-2188-1_5
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
http://dx.doi.org/10.1016/j.tre.2019.101834
https://www.sciencedirect.com/science/article/pii/S1366554519311688
https://www.sciencedirect.com/science/article/pii/S1366554519311688
https://www.sciencedirect.com/science/article/pii/S1366554519311688
http://dx.doi.org/10.1108/09600035199500001
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb42
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb42
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb42
http://dx.doi.org/10.1287/trsc.2021.1105
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb44
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb44
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb44
http://dx.doi.org/10.1137/20m135594x
https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
http://www2.census.gov/retail/releases/historical/ecomm/07q4.pdf
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb49
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb49
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb49
http://dx.doi.org/10.1145/3378889
http://dx.doi.org/10.1016/J.TRC.2020.01.012
https://dspace.mit.edu/handle/1721.1/131235
https://dspace.mit.edu/handle/1721.1/131235
https://dspace.mit.edu/handle/1721.1/131235
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb54
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb54
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb54
http://dx.doi.org/10.1145/3107411.3107424
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb56
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb56
http://refhub.elsevier.com/S1366-5545(23)00156-4/sb56
https://www.fastcompany.com/3004319/brown-down-ups-drivers-vs-ups-algorithm
http://dx.doi.org/10.3390/app9081665
http://dx.doi.org/10.3390/app9081665
http://dx.doi.org/10.3390/app9081665
https://www.mdpi.com/2076-3417/9/8/1665
http://dx.doi.org/10.1016/j.energy.2020.118371
http://dx.doi.org/10.1016/j.energy.2020.118371
http://dx.doi.org/10.1016/j.energy.2020.118371
https://www.sciencedirect.com/science/article/pii/S036054422031478X

	Predicting drivers' route trajectories in last-mile delivery using a pair-wise attention-based pointer neural network
	Introduction
	Problem Setting
	Literature Review
	Traveling salesman problems
	Sequence-to-sequence prediction using deep learning
	Using deep learning to generate TSP solutions

	Methodology
	Sequence-to-sequence modeling framework
	Pair-wise attention-based pointer neural network
	LSTM encoder
	LSTM decoder
	ASNN-based pair-wise attention

	Sequence generation and selection

	Case Study
	Dataset
	Experimental setup
	Evaluation Metrics
	Disparity score
	Prediction accuracy

	Benchmark models
	Results
	Model comparison
	Factors on trajectory predictability
	Impact of input sequence
	Computational time comparison

	Summary

	Conclusion and Future Research
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A. Mathematical Formulation of a LSTM Cell
	Appendix B. From Zone Sequence to Stop Sequence
	Appendix C. TSP-based first stop for sequence generation
	Appendix D. Analysis of high-quality routes
	References

